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The theory for metal speciation dynamics in dilute, monodisperse suspensions of spherical core-shell colloidal
ligand particles is extended with the impact of the electric double layer (EDL) field and inhomogeneous site
distribution inside the particle. The latter is defined by a diffuse, radial distribution for the density of charged
polymer segments supporting the ligands L. The site distribution at the scale of the particle suspension and
within the colloidal shell results in association/dissociation rate constants (denoted as ka

* and kd
*, respectively)

that may significantly differ from their homogeneous solution counterparts (ka and kd). The differences arise
from intertwined kinetics of metal-ligand (ML) complex formation/dissociation in the particle shell and
diffusive transport of free metal ions M within/outside the shell in the electric field set up by the EDL at the
core-shell/electrolyte interphase. The relationship between ka,d

* and ka,d is derived from the numerical evaluation
of the spatial, time-dependent distributions of free and bound metal as governed by coupled Nernst-Planck
equations corrected by appropriate chemical source term and written in a Kuwabara cell geometry. The average
interphasial electrostatic field stemming from the formation of the EDL at the complexing colloidal interphase
is obtained from the solution of the nonlinear Poisson-Boltzmann equation. The EDL composition is
exclusively governed by ions from indifferent background electrolyte present in large excess over free metal
species M. The dependences of ka,d

* on rate constants ka,d, geometrical details of particle, particle charge,
concentration of indifferent background electrolyte, and ligand distribution within the shell are thoroughly
discussed within the context of dynamic features for colloidal complex systems. Examination of the chemical
equilibrium regime allows addressing explicitly the impact of electrostatics on colloidal complex stability
(polyelectrolyte effect). The numerical study is further supported by an approximate analytical expression
based on Donnan partitioning and valid under the quasi-steady-state approximation (nonequilibrium chemical
regime). The analysis covers the limiting cases of charged rigid particles where binding sites are located at
the very surface of the core (e.g., functionalized latex colloids) and polyelectrolyte particles devoid of a hard
core (e.g., polysaccharide macromolecules, gel particles).

1. Introduction

It is now well established that the quantitative understanding
of metal speciation in aquatic media is a mandatory prerequisite
for appropriately addressing the relationships between the
various physicochemical forms of the metal species and their
respective activity, mobility, or bioavailability.1 Under envi-
ronmental conditions, metal ions are typically distributed over
a broad range of complexes that differ in size, geometry, and
nature (mineral or organic).1,2 This in turn gives rise to a
formidable panel of metal complex properties in terms of lability
and stability. Because natural aquatic media are never at
equilibrium,1 accurate conceptual frameworks are required to
capture the basic dynamic aspects underlying the interconversion
of metal complexes in bulk solution and at a given consuming
interface, e.g., an electrode2-6 or a microorganism.2,7,8 Tackling
adequately these aspects unavoidably necessitates invoking 3D
kinetics of metal complex association/dissociation in conjunction
with the various transport phenomena associated with the
selective consumption/affinity, usually that of free metal ions,
at/for a given interface.1,6-11

Until recently, dynamic theories disregarded the colloidal
nature of metal complexes as originating from the interaction
between metal ions and, e.g., humics, living organisms (bac-
teria), or polyelectrolyte particles such as polysaccharides.

Ligand distribution was instead considered as homogeneous
throughout the solution volume10-13 and the metal complex
association/dissociation rate constants taken identical to those
for their homogeneous solution counterparts. Such an assimila-
tion intrinsically comes to ignore the very spatial confinement
of ligands within the particle geometry. Pinheiro et al. quanti-
tatively showed that this oversimplification may lead to an
overestimation of the effective kinetic rate constants by several
orders of magnitude with, as a consequence, dramatic misin-
terpretation of the metal complex dynamics and lability
properties.6,14-16 In more detail, their analysis demonstrated that
the fundamental difference between metal speciation dynamics
in homogeneous ligand solutions and colloidal ligand dispersions
is due to the evolution from a chemically controlled release of
the metal to a diffusion-controlled one. Their theory is valid
under quasi-steady-state approximation and is applicable for hard
colloidal particles with ligands distributed at the very particle
surface. More recently, Duval et al.17 formulated a comprehen-
sive theory for metal speciation dynamics in suspensions of soft
colloidal particles where binding sites are distributed according
to three-dimensional spatial profiles. As argued previously,17

such particles, which consist of a hard core surrounded by an
ion-permeable shell layer, generally better describe particles of
environmental relevancy such as humics, bacteria, or mineral
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particles covered by adsorbed organic layers.18-24 The treatment
reported previously17 allows evaluation of the time-dependent
complex association/dissociation rates in monodisperse suspen-
sions of soft colloidal ligand particles with arbitrary ratio
between core radius and surface layer thickness. As such, the
dynamic model covers the full spectrum of particle types,
ranging from hard colloidal ligand particles to core/shell and
polymeric (porous) particles with the limits of hard and porous
particles as considered previously in refs 14 and 25, respectively.

Although theory in ref 17 highlights the basic aspects
governing the kinetics of mixed chemical-diffusion controlled
reaction between metal ions and soft colloidal ligand particles,
it remains strictly applicable under the following conditions:
(i) Ligands are homogeneously distributed within the colloidal
shell; i.e., the soft interphase (Throughout the manuscript, the
term “interphase” will be used rather than “interface” because
the latter refers to an infinitely sharp plane separating soft
colloidal shell and aqueous electrolyte. In practice, soft colloids,
microorganisms in particular, are diffuse18,24 with soft layer(s)
characterized by a gradual transition of physical and chemical
properties from bulk layer to electrolyte medium phase. To
denote such a transition, the term “interphase” is more appropri-
ate, and it further underpins the requirement for tackling the
physical chemistry of soft particles on the basis of 3D phase
properties whereas surface properties should be strictly invoked
in the case of hard particles.) is represented according to a step-
function-like profile. (ii) The impact of colloidal charge and
resulting electric double layer (EDL) on the transport of free
metal ions from bulk solution to the particle confined-ligands
is neglected. Let us discuss how severe conditions i and ii are
for aquatic colloidal systems.

Recent theoretical and experimental work on electrokinetics
of environmental,18,21 synthesized,19 and biological soft colloidal
particles22,23 pointed out the necessity to picture the interphase
between shell and aqueous medium as diffuse. Interphasial
diffuseness basically means that the density of soft material
constituting the shell is gradually distributed from the particle
core to bulk electrolytic medium (see detailed discussions in
refs 18 and 24). Such description of the soft interphase has been
supported by experimental evidence26-32 and is further funda-
mental for correctly addressing the response of the particle to
changes in physicochemical conditions of the external medium
(pH, ionic strength, temperature, solvent quality) or to external
stimuli (electrical or mechanical constrains).26-35 These factors
possibly lead to anisotropic deformation of the shell in terms
of particle swelling or skrinking.19,23,28,29,31-33,35 The inhomo-
geneous distribution of soft polymeric material within the
colloidal shell is inevitably accompanied by a diffuse repartition
of the ligand sites it carries. These sites are often responsible
for the overall (titrable) charge carried by the particle (e.g.,
carboxyl and phenolic groups for humic acids).19-21 Because
of the inherent dependence of the distribution of polymer chains
on salt level and solvent quality (coil or collapsed colloidal
state23,24,26-32), it is anticipated that ligand distribution within
soft colloidal particles dispersed in river or seawater will be
fundamentally different with consequences for the dynamics of
metal speciation that have been so far completely unexplored.
Also, it is mentioned that the very details of the spatial
distribution for the soft material density are likely to be governed
by the very binding of the metal ions to the reactive sites located
in the shell, via, e.g., the formation of intramolecular bridges
and resulting modifications of local chain conformation.36

Finally, for some biological systems such as bacteria and viral
particles, the complexity of the cell wall and/or internal

composition of the particle requires taking into account, besides
the physical heterogeneity invoked above, a chemical hetero-
geneity associated to the spatial repartition of ligand sites of
different natures throughout the particle reactive volume.22

Regarding the neglect made in refs 14 and 17 of the impact
of colloidal charge on metal speciation dynamics, it is reasonable
under conditions of sufficiently large salt level in aqueous
medium, i.e., for significant screening of the colloidal charge
by ions present in the electrolytic phase. Also it is acceptable
when the charge carried by the particle is so low that interfacial
electrostatic potentials remain well below kBT/e with kB the
Boltzmann constant, T the temperature, and e the elementary
charge. Natural organic matter and micro-organisms are gener-
ally negatively charged. The ionogenic sites responsible for this
charge are not only likely to bind and affect the fate of charged
metallic species but also to impact their spatial distribution
around the particle via the action of the interphasial electric
field that originates from electric double layer formation. Humic
acids21 may exhibit local inner electrostatic potentials in the
range ∼-100 to ∼-80 mV for 10-100 mM solution ionic
strength, with as a result a significant electrostatic partitioning
of cations throughout the particle interphase. The extraordinary
diversity in microbial life forms offers a wide spectrum of
electrostatic characteristics defining these microorganisms, with,
e.g., volume charge densities in the range -1 to -100 mM and
above18,22-24 (charge expressed in molar concentration of
equivalent charges).

Given the above elements, the current study reports a
theoretical formalism for metal speciation dynamics in suspen-
sions of diffuse, charged soft colloidal ligand particles, thereby
extending the approach detailed in ref 17 to situations of
practical interest where EDL and heterogeneous ligand distribu-
tions within the colloidal shell are expected to impact on the
overall metal flux to the reactive particle.

2. Theory

2.1. Modeling the Soft Diffuse Interphase between Soft
Colloidal Ligand Particle and Aqueous Electrolyte. By
adoption of the nomenclature introduced in ref 17, the soft
colloidal particles consist of a rigid core of radius denoted as
a, strictly impermeable to solvent molecules and ions, and a
soft permeable colloidal shell of thickness d, as schemed in
Figure 1. The particles are positioned according to a Kuwabara
cell representation (Figure 1A) where each particle is surrounded
by a virtual cell of radius a + rc with rc > d. The particle/
solution volume ratio in a unit cell equals the particle volume
fraction over the entire system so that the dimension rc is given
by

rc ) (a+ d)φ-1/3 - a (1)

or, equivalently,

rc ) (4πcp/3)-1/3 - a (2)

with φ the particle volume fraction (hard core and soft
components included) and cp the particle number concentration.
Within the colloidal shell, the spatial distribution for the density
ns of constituting polymer segments is assumed to depend on
the radial position r only (the origin is taken at the center of
the particle core) according to the relationship

ae re a+ d: ns(r)/ns
* ) f(r) (3)

where f is a radial function that satisfies the conditions f(r)a+d)
) 0 and df(r)/dr|r)a+d ) 0, which express the vanishing of the
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polymeric shell at the very interface formed with the electrolytic
medium. ns

* is the nominal segment density,24 i.e., for homo-
geneous distribution of soft material within the shell phase. As
extensively discussed previously,18,24 the determination of the
function f requires knowing the types and magnitudes of the
interactionsexistinginthesystem{chargedpolymersegments-solvent
molecules-electrolyte ions}. Although such information is
accessible for rather simple microgel particles or gel films using,
e.g., light scattering measurements,26-31 it is not easily at hand
for complex biological systems23 except perhaps for bacterioph-
ages.22 For this reason and for the sake of illustration, we shall
adopt in the following a Gaussian-like distribution for the
polymer segment density profile, i.e.

{ ae re a+ d: f(r)) �{ 1- exp(-[r- (a+ d)
R ]2)}

a+ de re a+ rc: f(r)) 0

(4)

where R corresponds to the typical length over which the radial
segment density distribution decays. The magnitude of the ratio
R/d informs on the extent of diffuseness of the interphase.
Although the situation of step-function profile is recovered for
R/df 0 (which corresponds to ns(r)/ns

*f 1), increasing values
of R/d lead to a pronounced position dependence for f or, for
that matter ns (see Figure 1B). To achieve a correct understand-
ing of the effect of segment density on speciation dynamics,
the parameter � in eq 4 ensures the constancy of the total
polymer segment concentration24 or, equivalently, of the total
concentration of ligand sites upon changing R/d and/or d. It is
therefore provided by

�) (a+ d)3 - a3

3∫a

a+d
r2{ 1- exp(-[r- (a+ d)

R ]2)}
(5)

It is stressed that the calculations below will be carried out using
the radial density profile as defined by eqs 3-5. Such profiles
have been measured by neutron reflectivity on weak ionic
polymer brushes28,30,31 and are theoretically predicted for poly-

electrolyte brushes in osmotic regime.30,31,37 Without loss of
generality, our formalism below is valid for any other profile
f(r) whether empirical, analytical, or computational.24,38,39 Note
that the radial density distribution given in eq 4 is not that
adopted in ref 24 within the framework of electrophoresis theory
for infinitely dilute suspensions of diffuse soft colloids. We
motivate this by arguing that the profile defined in eq 4 enables
an unambiguous positioning of the edge of the shell (located at
r ) a + d), whereas the tanh-like function introduced in ref 24
inevitably requires defining the limit of extension of the shell
layer according to arbitrary prescribed quantitative criterion.40

For the sake of simplicity, it is assumed that the soft particles
under consideration carry a single type of ligands L of charge
zLe with zL the valency of L. By assumption that ligands L within
the colloidal shell are uniformly distributed along the polymer
chains, the local ligand concentration, denoted as cL(r), verifies

ae re a+ d: cL(r)/cL
* ) f(r) (6)

where the nominal ligand concentration cL
* is linearly related to

ns
* via cL

* ) ns
*Θ/NA, where Θ is the number of binding sites

per polymer segment and NA is the Avogadro number. Within
the soft surface layer, the space charge density distribution FL

el(r)
stemming from the presence of charged sites L is simply given
by

ae re a+ d: FL
el(r)) zLFcL

*f(r) (7)

Equation 7 is valid under the condition that protolytic dissocia-
tion of the charged reactive sites L is complete. In reality, the
degree of dissociation of these may depend on the concentration
in solution of so-called charge-determining ions for the particle
considered (e.g., protons/hydroxyls for L representing carboxylic
or phenolic functional groups as in humic substances21). Also,
the local electrostatic potential distribution ψ(r) within the shell
is known to impact the dissociation of ionogenic sites and
thereby the overall titrable charge carried by the particle.19 In
recognition of these elements, eq 7 should be then replaced
by19,24

Figure 1. (A) Scheme (not to scale) of a dispersion of monodisperse soft colloidal ligand particles distributed according to a Kuwabara cell type
representation. The unit cell of this representation is given with the indication of the nomenclature used for the coordinate system and for the
geometrical parameters that define the particles. (B) Schematic representation of the radial ligand distribution profile within the soft surface layer
for homogeneous (R/d f 0) and diffuse (R/d > 0) ligand repartition.
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ae re a+ d: FL
el(r)) zLFcL

*f(r) g(pH,ψ(r)) (8)

where g is an isotherm describing the protolytic properties of
the polyelectrolyte layer where charged L are distributed. For
the sake of simplicity and conciseness, eq 7 will be that used
in the following developments. It is stressed that examination
of cases where colloidal charge is mediated by bulk concentra-
tion of charge-determining ions and salt level in solution may
be straightforwardly done adopting corrections of the type
indicated in eq 8.

2.2. Formulation of the Problem. Consider a swarm of
identically charged diffuse soft colloidal ligand particles described
above and distributed in dispersion as shown in Figure 1. The
aqueous medium contains a z:z symmetrical indifferent background
electrolyte at concentration c∞. The indifferent nature of the
electrolyte ensures the absence of any chemical reaction between
ligands L and anions/cations present in solution. Once the electric
double layer as originating from the charge carried by the particles
is completely relaxed, i.e., anions/cations distributions within and
outside the soft particle have reached thermodynamic equilibrium
(this generally requires time delays of the order of the microsec-
onds41), metal ions (M) of valency zM are introduced in the medium
at initial bulk concentration denoted as cM

* . This operation defines
our reference state for the time scale, i.e., t ) 0. Metal ions (M)
are then supposed to interact with the particle-confined ligands
according to the reaction

M+L {\}
ka

kd

ML (9)

where ka and kd are the intrinsic ML complex association and
dissociation rate constants, respectively. The intrinsic (chemical)
stability constant K of the ML complex is provided by K )
ka/kd. The magnitude of the rate constant ka is generally in
agreement with the Eigen mechanism42 that comprises the
formation of a precursor outer-sphere complex, with an elec-
trostatically determined stability (Kos), followed by removal of
water from the inner coordination sphere (kw) as the usual rate-
limiting step.43 The association rate constant is then given by

ka )Koskw (10)

The stability constant Kos for the outer sphere is primarily
dependent on the charges of the reacting species and on the
ionic strength of the medium. A theoretical expression for Kos

that includes both local electrostatic interactions between M and
L and the effect of ionic strength on those interactions may be
derived from statistical considerations.42 The result reads as

Kos )
4π
3

Naag
3 exp(- zMzLe2

4πεoεrkBTacc
[1-

κacc

1+ κacc
]) (11)

which is based on the combination of the Fuoss equation44 with
Debye-Hückel electrostatics for the point charge interaction
with inclusion of screening by the surrounding electrolyte
solution. In eq 11, εo and εr are the dielectric permittivity of
vacuum and relative dielectric permittivity of the medium,
respectively, ag is the geometrical center-to-center distance
between M and L, acc is the charge center-to-center distance
between M and L, and κ the reciprocal screening Debye layer
thickness defined by

κ) (2z2F2c∞

εoεrRT )1⁄2

(12)

Equation 12 holds for aqueous solutions where the inequality c∞

. cM
* is satisfied; i.e., the indifferent background electrolyte is in

large excess over the target metal ions. For the sake of simplicity,
we shall ignore the difference between the mass and the charge
separations between metal ion and ligand. As correctly pointed
out in ref 45, this approximation is expected to be crude when
considering composite molecular ligand systems. It is specified here
that van Leeuwen46 recently derived a formalism showing that
Eigen mechanism generally continues to apply for the situation of
a 2D/3D surface/colloid-bound ligand sites, but it does so for a
Kos value different from that relevant for freely dissolved ligands
(eq 11). The discrepancy mainly originates from differences in
complex geometry, but the conceptual electrostatic and screening
corrections necessarily involved in the expression of Kos remain
basically the same as those appearing in eq 11. In the current study,
for the sake of generality and simplicity, we do not specify the
nature of the ligand particle (that can be a microgel particle, a
biocolloid, etc.) and the detailed geometry of the complex within
the ligand particle, and thus we reason on the basis of eq 11.
Depending on the type of complexing colloid considered, refine-
ment of Kos is possible as detailed in ref 46, and subsequent
implementation in our metal speciation dynamics formalism is
straightforward. Also, for a certain metal complex of which the
formation does not follow the conventional Eigen mechanism, eqs
10 and 11 have to be replaced by expressions in line with the so-
called generalized Eigen mechanism.47

2.3. Key Transport Equations Governing the Local M and
ML Concentration Profiles in Colloidal Ligand Suspensions.
Validity Frame for the Dynamic Speciation Model. Before
writing explicitly the fundamental transport equations that
govern the temporal and spatial dependencies of the local
concentrations of M and ML within and outside the soft colloidal
ligand particles, we find it of utmost importance to first consider
explicitly the various assumptions that underly their validity.
Some of these have already been thoroughly discussed,17 and
the reader is referred to ref 17 for further details.

Below, we shall consider that Dparticle , DM where Dparticle

and DM stand for the diffusion coefficient of the particle and
free metal ions, respectively. This imposes a lower particle size
limit of the order 2-5 nm below which our developments cannot
be applied. Besides, we neglect sedimentation rates, so that
particles of upper size-limit 1-10 µm will be considered.17 Also,
continuum (smeared out) electrostatic (mean field Poisson-
Boltzmann formalism) and diffusion equations will be employed,
thus examining situations where l , d and/or κl , 1, l being
the typical separation distance between two adjacent reactive
sites. As extensively discussed,17 the motion of ligands L or
for that matter ML complex within the shell layer is disregarded
and the ligand distribution within the shell is considered frozen
in time. Besides, within the scope of the current analysis, we
shall tackle the situation of unstirred aqueous media (convection
free) with a large excess of indifferent background electrolyte
over M species, and a large excess of L sites over free M ions
for every position r within the colloidal shell. This allows us
(i) to maintain a prescribed constant value for the total ionic
strength of the medium, (ii) to neglect the impact of M
concentration (that varies in space and time) on the electric
double layer (EDL) composition, the latter being primarily
governed by the pre-equilibrated distributions (t < 0) of
indifferent electrolyte ions throughout the soft interphase, (iii)
to disregard the change with time of the local ligand concentra-
tion due to reaction (9) and thereby that of the volume charge
density of the particle (see eqs 6-8), and finally (iv) to identify
the diffusion of the free metal species outside and within the
electric field set up by the EDL as the predominant mode of
transport with quickly achieved steady state for particles with
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sizes ranging from 2-5 nm to 1-10 µm.48-51 Note that
simplifications i-iv are generally in agreement with practical
environmental situations of interest where metals are present
at the state of traces1 and are in interaction with highly charged
colloidal matter. In situations where these requirements are not
met, the current formalism should be amended for taking into
account the coupled relaxation of the EDL (relaxation toward
equilibrium) via the mixed transport-kinetic contributions that
govern the local concentrations of indifferent ions and target
metal across the interphase. In such situations, it may well be
that complexation by shell ligands and associated re-equilibra-
tion of the EDL become competitive parallel processes. This
situation of EDL relaxation mediated by intraparticular com-
plexation reactions is currently under theoretical and experi-
mental investigations.

In the following, we shall exclusively investigate cases where
rc . a + d and κrc . 1. The latter condition warrants the
absence of EDL overlap between neighboring particles. The
former ensures that the concentration profiles in the nonequi-
librium chemical regime are at steady state, while the bulk metal
concentration is being possibly depleted (for discussion on this
issue, see ref 9 and Supporting Information therein). We stress,
however, that the model and numerical analysis reported here
are sufficiently complete to cover practical situations where the
conditions rc . a + d and κrc . 1 are not necessarily satisfied.
It is underlined that the extent of validity of the condition cL(r)
. cM

* (∀ r ∈ [a, a + d]) depends on the position where radial
density distribution is diffuse (R/d > 0). In particular, in the
vicinity of r ) a + d, this condition is necessarily violated
because, in essence, cL(r)a+d) ) 0. This difficulty, also met
within the classical homogeneous representation of ligand sites
within the shell,14,17,25 is here circumvented by ignoring the very
time variation of L concentration in particular at r ≈ a + d.17

This is legitimate as long as the condition cL(r) . cM
* applies

for r ) (a + d)-, which is rendered possible by the choice of
the profile f(r). Also, the interfacial distance over which cL(r)
increases from 0 to values larger than cM

* is of the order l, and
hence this issue is one of the details in the transient regime.

Local Transport Equations for M and ML Species. Under
the conditions given above, M species diffusion within/outside
the particle shell and M species conduction under the action of
the EDL interphasial field are the metal transport modes to be
considered. The conservation equations for M and ML within
a unit cell are then given by

ae r < a+ d:

{ ∂cML(r,t)

∂t
)-{kdcML(r,t)- kacM(r,t) cL

*f(r)}

∂cM(r,t)

∂t
)DM∇ r

2cM(r,t)+ {kdcML(r,t)- kacM(r,t) cL
*f(r)}

+
zMDM

z { ∂cM(r,t)

∂r
∂y(r)
∂r

+ cM(r,t)∇ r
2y(r)}

(13,14)
a+ de re a+ rc:

∂cM(r,t)

∂t
)DM∇ r

2cM(r,t)+

zMDM

z { ∂cM(r,t)

∂r
∂y(r)
∂r

+ c̃M(r,t)∇ r
2y(r)} (15)

where ci)M,ML(r,t) is the local concentration of species i at a
given time t and radial position r and ∇ 2 ≡ ∂2/∂r2 + (2/r)∂/∂r

is the Laplacian operator in spherical geometry. The diffusion
coefficient of free metal species, DM, is taken identical within
and outside the particle shell under conditions set forth
previously.17 The quantity y(r) is the dimensionless local EDL
potential defined by y(r) ) zFψ(r)/RT with F the Faraday
number and R the gas constant.

The capture of the physical meaning of eqs 13-15 deserves
some additional comments in conjunction with the conditions
discussed above which warrant the validity of the proposed
dynamic speciation model. In eq 13, the term related to ML
diffusion is ignored in line with Dparticle , DM and the neglect
of the motion of L/ML groups within the particle, as previously
discussed. Doing so, the remaining term is the chemical source
term due to complex association and dissociation that govern
the variations in time and space of cML(r,t) within the particle
shell. Equation 14 is the time-dependent Nernst-Planck equa-
tion where diffusion, chemical source term, and conduction
components are included. Because we are examining practical
situations where c∞ . cM

* and cL(aer<a+d) . cM
* , the electric

double layer maintains its equilibrium state (achieved at t < 0)
during the speciation experiment. As such, EDL composition
and electric potential y both remain independent of the space
and time concentration variations of M and ML within and/or
outside the colloidal shell. Because of the absence of ligand
sites outside the shell, the chemical source term is not present
in eq 15. Finally, the excess of ligands over free metal ions
allows us to disregard the time variation of local ligand
concentration cL(r) ()cL

*f(r)) in eqs 13 and 14.
Boundary Conditions for Free and Bound Metal Concen-

trations. At t ) 0, the soft particles with ligands L and
equilibritated EDL get into contact with aqueous solution that
contains free metal species M at initial bulk concentration cM

* .
The initial free and bound metal concentrations within the
particle shell are set to zero, which gives

cML(aerea+d,t)0)) 0 (16)

cM(aerea+d,t)0)) 0 (17)

whereas outside the shell where there is necessarily no complex
ML, we write

cM(a+derea+rc,t)0)) cM
* (18)

The author verified that the nature of the initial eqs 16-18 do
not impact the M and ML concentration profiles once they have
reached the quasi-steady-state regime, i.e., the regime where
the diffusive flux of free M outside the shell layer maintains its
steady-state nature. It is in this regime that the dependence of
the effective colloidal complex association-dissociation rates
and of the colloid complex stability constant will be analyzed
as a function of electric double layer field. In particular,
substituting the right-hand sides of eqs 16-18 by the appropriate
thermodynamic expressions for the local M and ML concentra-
tions, as required within the context of dielectric relaxation
analysis, leaves unchanged the speciation dynamic parameters
of interest in the quasi-steady-state regime. In other words, the
nature of eqs 16-18 falls in the details of the transient regime.

The required four spatial boundary conditions related to eqs
14 and 15 and pertaining to M concentration within and outside
the soft surface layer, are given by

∂cM(r,t) ⁄∂r|r)a,t ) 0 (19)

∂cM(r,t) ⁄∂r|r)a+rc,t
) 0 (20)

µM(r)a+d-,t)) µM(r)a+d+,t) (21)
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{ ∂cM(r,t)/ ∂ r+
zM

z
cM(r,t)

∂y(r)
∂r }

r)a+d-,t
)

{ ∂cM(r,t)/ ∂ r+
zM

z
cM(r,t)

∂y(r)
∂r }

r)a+d+,t
(22)

Equation 19 reflects the impermeable character of the core
particle surface for free metal species, and eq 20 stems from
symmetry consideration for the M concentration profile at the
position that corresponds to half the separation distance between
centers of two adjacent particles. Equations 21 and 22 are the
required continuity equations for the electrochemical potential
of M and for the overall flux of M (diffusion and migration
components included) at the edge of the shell layer, respectively.
Note that combining eqs 21 and 22 with the necessarily verified
continuity equations for the EDL field and electrostatic potential
at r ) a + d (see following alinea) leads to the continuity of
the M concentration profile and its derivative at r ) a + d.
The requirements imposed on the polymer segment density
profile at r ) a + d (f(r)a+d) ) 0 and df(r)/dr|r)a+d ) 0)
allows a formulation of the problem in a single continuous
domain r g a, as extensively discussed in the Supporting
Information.

Determination of the EDL Field. Within the common
assumptions that solvent-mediated forces may be neglected and
that the different ionic species are pointlike, the distribution of
the (indifferent) electrolyte ions at equilibrium obeys Boltzmann
statistics and the equilibrium potential ψ the nonlinear
Poisson-Boltzmann equation, both being function of the radial
position only. Thus it comes for a z:z symmetrical electrolyte

∇ 2y(r))- zF
RTεoεr

{Fions
el (r)+FL

el(r)} (23)

with

Fions
el (r))-2zFc∞ sinh(y(r)) (24)

Fions
el (r) pertains to the local space charge density associated with

mobile indifferent ions distributed throughout the core-shell/
aqueous medium interphase, and FL

el(r) is that originating from
fixed charged ligand sites distributed according to the radial
density profile given by eq 4.

The continuous formulation of the function f(r) for radial
positions ranging from r ) a to r ) a + rc (in particular at r )
a + d, see eq 4) avoids the necessity for introducing other
boundaries than those pertaining to the core-shell interphase
(r ) a) and the far-field domain (r ) a + rc).24 The former
reflects the electrosurface properties of the particle core and may
be written in terms of the particle core surface potential, core
surface charge or regulation mechanism,24 depending on the
chemical nature of the particle core considered. For simplicity,
we shall here exclusively examine situations where the particle
core surface is uncharged, so that

∂y(r)
∂r |r)a

) 0 (25)

Straightforward modifications of eq 25 may be done, e.g., when
examining particles of which the core surface charge is pH-
dependent or the core surface potential is Nernst-like (see refs
19 and 24 for further details). The boundary for cell-cell contact
is given by

∂y(r)
∂r |r)a+rc

) 0 (26)

and originates from symmetry of the electrostatic potential at
half the center-to-center separation distance between adjacent

particles. In the absence of EDL overlap, that is, for κrc . 1
(case considered in this study), eq 26 is equivalent to setting
y(rf∞) ) 0, which basically translates bulk electroneutrality
condition.

2.4. Derivation of the Effective Kinetic Rate Constants
ka

* and kd
*. The quantitative derivation of the effective complex

association and dissociation rate constants (denoted as ka
* and

kd
*, respectively), which are relevant at the scale of the ligand

particle or for that matter of the unit cell where it is enclosed,
necessarily requires correcting the local kinetic rate constant ka

and kd by the appropriate transport contributions underlying the
interaction of M with the colloidal ligand particle. The rate
constants ka

* and kd
* should verify the conservation equations that

are now written for a colloidal particle within a unit cell17

∂Fi)M,ML
V (t)

∂t
) ( { kd

*FML
V (t)- ka

*FM
V (t)FL

V} (27)

The + sign at the right-hand side of eq 27 holds for i ) M and
the - sign for i ) ML. The M, ML, and L concentrations
Fi)M,ML

V (t) and FL
V over the whole cell volume are defined by

i)M, ML: Fi
V(t)) 4π

Vc
∫a

a+rc r2ci(r,t) dr (28)

and

FL
V ) 4π

Vc
∫a

a+rc r2cL(r) dr)
4πcL

*

Vc
∫a

a+d
r2f(r) dr (29)

with Vc ) 4π(a + rc)3/3 ) cp
-1 the volume of a unit cell and

cp the particle number concentration introduced before (eq 2).
Following the strategy previously adopted,17 it may be shown
that the searched ka

* is depending on the time t and local rate
constant ka according to (see detailed derivation steps in the
Supporting Information)

ka
*(t)

ka
)

FM
s (t)FL

V -FML
V (t)K-1

FM
V (t)FL

V -FML
V (t)K*-1

(30)

where the volume concentration of free metal within the shell
layer at time t, denoted as FM

s (t), is defined according to

FM
s (t)) 4π

Vs
∫a

a+d
r2cM(r,t) f(r) dr (31)

with Vs ) 4π{(a + d)3 - a3}/3 the volume over which the
reactive binding sites L are distributed.

The colloid complex stability constant K* involved in eq 30
is defined by K* ) ka

*/kd
* and is further provided by the explicit

expression (see the Supporting Information for demonstration)

K*

K
)

Vc

Vs

∫a

a+d
r2f(r) exp(-zMy(r)/z) dr

∫a

a+rc r2 exp(-zMy(r)/z) dr
(32)

Equation 32 corrects the intrinsic (chemical) ML complex
stability constant K for the electrostatic contribution arising from
the EDL field and for the heterogeneous ligand distribution
within the colloidal shell. Note that the EDL field and potential
both intrinsically depend on the charged ligands distribution
within the shell, as underlined by eqs 23 and 24 and eq 7. In
the case where screening of colloidal charge by ions from
background electrolyte is complete (as met for sufficiently large
electrolyte concentrations), we have y(r) f 0. By combination
of eq 32 and eqs 4 and 5 for such cases, we get
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K*fK (33)

Equation 33 corresponds to the limiting situation analyzed
previously,17 where EDL electrostatics was not taken into
account within metal speciation dynamics formalism.

2.5. Computation Procedure and Analyses of Practical
Limiting Situations. Numerical Scheme. The set of eqs 13-26
rigorously defines the spatial profiles for the M and ML
concentrations within (for ML and M) and outside (for M) the
particle colloidal shell where ligands L are distributed. The
details of the numerical procedure employed for solving eqs
13-26 and deriving the corresponding searched ratio ka

*(t)/ka

(eq 30) are indicated in the Supporting Information. Following
this procedure, the dependence of ka

*(t)/ka on the particle
geometry (parameters a and d), the background electrolyte
concentration c∞, the nominal ligand concentration (cL

*), or the
degree of interphasial diffuseness (R/d) may be obtained.

Cases Where Analytical Expressions for K* Are AWailable.
In view of the general expression that defines K* (eq 32), the
cases where explicit expressions for K* are available are
basically those where analytical derivation of the electrostatic
potential distribution is possible. In the Debye-Hückel limit
|y(r)| , 1 under the condition κrc . 1 (absence of EDL overlap),
the Poisson-Boltzmann equations (eqs 23 and 24) may be
linearized and solved analytically under the boundaries given
by eqs 25 and 26. The electrostatic potential then reads as

y(x))- 1
2(x+ κa)

{∫0

κd
(x+ κa) exp(-x) F(x) dx} ×

{ exp(x)+ κa- 1
κa+ 1

exp(-x)} +
exp(x)

2(x+ κa)∫0

x
(x+ κa) exp(-x) F(x) dx-

exp(-x)
2(x+ κa)∫0

x
(x+ κa) exp(x) F(x) dx (34)

with x ) κ(r - a) and F(x) ) -(zLcL
*)/(2zc∞)κ2f(x). The

combination of eq 32 with eq 34 defines the stability constant
K* of colloidal metal complexes for which |y(r)| , 1. The latter
condition, which defines the degree of validity of eq 34, may
be replaced by the more restrictive inequality |y(r)a)| , 1
because the monotonous decrease of |y(r)| across the soft
interphase basically imposes |y(r)a)| g |y(r)|.

Cases Where Analytical Expressions for ka
* Are AWailable.

We previously showed17 that, in the nonequilibrium chemical
regime, the complex association rate constant ka

* may be
satisfactorily approximated by

ka
*/ka ≈ (1+

kaFL
V

4π(a+ d)DMcp
)-1

(35)

which holds for dilute suspensions of homogeneous soft particles
(R/d f 0) of which the size is significantly lower than the
surrounding metal diffusion layer thickness (condition satisfied
as long as rc . a + d17). The approximations leading to eq 35
are essentially the neglect of M and ML concentration polariza-
tions within the shell layer and the neglect of the interphasial
electric field across the soft interphase. The correctness of the
former simplification was largely discussed in ref 17 upon
comparison with rigorous numerical evaluation of ka

* for y(r)
f 0. Following the basic steps which lead to eq 35 and which
are detailed in ref 17 (see Appendix 5 therein), it is possible to
easily modify eq 35 by including the enhancement of the free
metal concentration within the shell layer as a result of the
presence of a potential within the particle. After replacing the
quantity cM(r)a+d,t) in ref 17 by c•(t) exp(-zMy(r)a+d)/z),

with c•(t) the free metal concentration at time t just outside the
electric double layer (where the potential is zero), we obtain

ka
*/ka ≈

exp(-zMy(r)a+d)/z)(1+
ka exp(-zMy(r)a+d)/z)FL

V

4π(a+ d)DMcp
)-1

(36)

A similar expression was given in the conclusion of the work
by Pinheiro et al.14 who examined the case of hard ligand
particles. Equation 36 is autoconsistent only in the limiting
situations where a constant potential within the shell layer is
physically realistic, that is, (i) for soft particles satisfying κmd
. 1 (thin EDL limit) and (ii) for soft particles satisfying κd ,
1 (thick EDL limit); i.e., the soft layer recedes significantly
within the EDL so that, from an electrostatic point of view, the
particle may be viewed as a hard colloid. In case i, y(r)a+d)
basically identifies to the Donnan potential yD, and the quantity
κm ) κ cosh(yD)1/2 is the reciprocal Debye layer thickness within
the shell layer corrected for electrostatics.52 The Donnan
potential yD is simply evaluated from electroneutrality condition
within the surface layer, thus yielding

yD ) sinh-1( zLcL
*

2zc∞) (37)

In case ii, y(r)a+d) may be assimilated to the surface potential
y(r)a), for which Ohshima recently gave an implicit analytical
formulation based on the resolution of transcendental integral
equations.53 It is stressed that eq 36 makes sense under the strict
condition that the thickness of the EDL within and outside the
particle is immaterial when compared to the thickness of the
diffusion layer. Given this, we may state that the analogue in
electrochemistry of eq 36 is the Frumkin formulation of electron
transfer rates corrected for electric double layer effect.51 Also,
eq 36 basically relies on the simplistic electrostatic partitioning
model of M species where the potential y is constant not only
within the shell (y(r)a+d) ) yD for κmd . 1 and y(r)a+d) ∼
y(r)a) for κd , 1) but also just beyond the soft surface layer
(y(r>a+d) ) 0). This comes to state that eq 36 essentially
disregards the impact of the EDL field that develops within and
beyond the shell. Appropriate account of the EDL field within
the shell formalism for metal speciation dynamics in soft ligands
suspensions necessarily requires inclusion of the nonlinear
electrostatic terms (where the quantities ∂y(r)/∂r and ∇ r

2y(r) are
involved) in the fundamental M/ML transport equations (eqs
14 and 15).

3. Results and Discussion

3.1. Impact of the EDL Interphasial Field on the M/ML
Concentration Profiles and on the Time Dependence of ka

*/
ka. As a starting point, we first examine the basic features of
metal speciation dynamics in dilute suspensions of soft colloidal
particles with homogeneous distribution of ligands within the
shell (R/d f 0, Figure 1B) as a function of the background
electrolyte concentration c∞. The charge density carried out by
the soft surface layer (eq 7) is set to FL

el/F ) -10 mM (zL)-1),
a value in agreement with that typically determined by elec-
trokinetics for some polysaccharide microgel particles19 or
bioparticles.23 Besides, the magnitude of this charge is suf-
ficiently large to examine the contribution of EDL electrostatics
on metal speciation dynamics for c∞ values of practical interest,
typically in the range 0.1-100 mM. For the sake of comparison,
the M/ML concentration profiles and the time dependence of
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ka
* (Figures 2-4) at various c∞ will be presented, in a first stage,

for Kos ) 3.7 × 10-3 mol-1 m3 (zL ) -1, zM ) +2), thus
ignoring the ionic strength dependence of Kos as expressed by
eq 11. The adopted value for Kos corresponds to that for c∞ )
10 mM. In a second stage, the dependence of Kos with c∞ will
be explicitly taken into account, especially for analyzing the
variation of ka

* with c∞ in the quasi-steady-state regime. This
methodology allows unraveling the concomitant effects of the
EDL interphasial field (relevant at the colloidal scale) and local
inner electrostatic field (eq 11 relevant at the molecular scale
or, for that matter, at the scale of the local ML complex) on the
dynamic features of metal speciation in soft colloidal ligand
suspensions.

In Figure 2, typical M and ML concentration profiles are
depicted as a function of time for c∞ ) 100 mM (parts A and
B of Figure 2) and c∞ ) 0.1 mM (parts C and D of Figure 2).
At c∞ ) 100 mM, departing from the situation at t ) 0 where
M and ML species are absent from the particle shell (eqs 16
and 17), the ML concentration at a given position within the
shell continuously increases with time as a result of gradual
diffusion of free M from the solution (outside the particle) to
the reactive shell layer and subsequent complexation (eq 9).

Doing so, the ML concentration at fixed time basically increases
from r ) (a + d)+ to r ) (a + d)-, thus following in this spatial
region the profile dictated by the ligand distribution (Figure 1B).
The concentration of ML complex then decreases from the inner
edge of the soft surface layer (r ) (a + d)-) to the interface
core/shell (r ) a). This decrease is related to the corresponding
decrease in free metal concentration as governed by diffusive
transport of free M species outside and within the shell. The
transitory development of the diffusion layer for the free M
concentration at both sides of the very interface between the
shell and the electrolyte solution (position r ) a + d) is reflected
in the characteristic time evolution of the concentration profiles
a-c in Figure 2A (0 < t < 10 µs). After some time delay (t >
5 ms in the example commented here), bulk metal concentration
significantly decreases with time as a result of metal depletion
within the finite volume Vc (inset Figure 2A) where the soft
colloidal ligand is located. This depletion is accompanied by a
decrease with time of the local M concentration within the shell.
It is thereby recalled that the difference between the rigorous
no-flux condition as adopted in eq 20 and the approximate semi-
infinite diffusion description remains insignificant as long as
the typical depletion time scale is much larger than that for the

Figure 2. Typical concentration profiles for free metal M (panels A and C) and complex ML (panels B and D) species within and without the shell
layer where ligands are located, at two electrolyte concentrations c∞ ) 100 mM (panels A and B) and c∞ ) 0.1 mM (panels C and D). In the insets
of panels A and C, the M concentration profiles are depicted over the whole range of radial positions within the unit cell. Meaning of the symbols:
t ) 93 ns (a), 0. 93 µs (b), 9.3 µs (c), 93 µs (d), 0. 93 ms (e), 9.3 ms (f), 93 ms (g), 0.93 s (h), 9.3 s (i). The boundary between the soft shell layer
and outer electrolytic medium is located at (r - a)/(a + d) ≈ 1. Model parameters: d ) 100 nm, a/d ) 10-2, R/d ) 10-2, DM ) 10-9 m2 s-1, cL

*

) 10 mol m-3, FL
V ) 3.7 × 10-4 mol m-3, T ) 298 K, K ) 5 × 104 mol-1 m3, kw ) 7 × 106 s-1, Kos ) 3.7 × 10-3 mol-1 m3 ) Kos(c∞)10 mM)

(see related discussion in the main text), rc/(a + d) ) 30, z ) 1, zM ) 2, and zL ) -1. The values of DM and kw are typical of those for Mn(II)
metal ion,42 and the value of K is typical of metal complexation by carboxylate groups distributed at the surface of latex particles.14
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establishment of the quasi-steady-state regime (or nonequilib-
rium chemical regime).9 During the course of depletion, the M
concentration gradient across the shell layer gradually vanishes
and becomes nearly zero for sufficiently long time. Local
chemical equilibrium within the soft particle surface layer is
then reached,17 and the M and ML local concentrations within
the shell verify the thermodynamic equation

cML(r,t)

cL
*cM(r,t)

fK (38)

For c∞ ) 100 mM, the fixed charges carried by the polymer
chains in the shell are efficiently screened by the ions present
in the indifferent electrolyte medium. As a result, the local
equilibrium EDL potential and field strength are weak (parts A
and B of Figure 3) with an electrostatic partitioning of the M
species in the interphasial region core-shell/electrolyte that
remains insignificant. This explains why at equilibrium (curve
i in Figure 2A) the M concentration in the shell is essentially
identical to that outside the soft particle. In parallel, the ML
concentration distribution becomes flat, in line with eq 38. Along

with this, the stability constant K* for the colloidal ML complex
basically reduces to its intrinsic chemical component K. A closer
inspection of the M concentration profiles in the time range that
precedes the establishment of chemical equilibrium reveals that
cM slightly increases when passing from the position r ) (a +
d)+ to r ) (a + d)- before decreasing further inside the shell
as commented above. This slight increase is due to the diffusion
of M in the EDL region where the field, even weak, counteracts
noticeably the diffusion process and the associated building up
of interphasial M concentration gradient.

The latter features are magnified when examining the M/ML
concentration profiles at c∞ ) 0.1 mM (parts C and D of Figure
2). Here, for a given time t, the significant enhancement of the
local M concentration from r ) (a + d)+ (just outside the shell)
to r ) (a + d)- is related to the strong magnitude of the potential
within the soft surface layer (Figure 3A). This potential identifies
to the Donnan potential because the thickness of the soft
component of the particle considered in Figure 2 complies at
c∞ ) 0.1 mM with the condition of a thin EDL. The coupling
between the free metal diffusion process and the migration of

Figure 3. Distribution profiles for the dimensionless EDL electrostatic potential (panel A) and EDL field (panel B) at various electrolyte concentrations
(indicated) under the conditions of Figure 2. Symbols refer to the exact solutions of the nonlinear Poisson-Boltzmann equation, and dotted lines
in panel A are predictions based on the Debye-Hückel approximation (eq 34). Plain lines in panel B are only guides to the eye. Concentration
profiles of free metal M (panel C) and complex ML (panel D) in the quasi-steady-state regime (t ) 93 ms) at various c∞ (indicated) (same model
parameters as in Figure 2).
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M in the EDL region results in peculiar concentration profiles
marked by a maximum that grows in the transient regime (curves
a-c) during the formation of the M diffusion layer and further
diminishes in magnitude when bulk metal depletion starts to
significantly set in (curves d-h in the inset of Figure 2C). For
a sufficiently long time, i.e., upon approach of chemical
equilibrium (eq 38), this maximum basically disappears (see
curves f-i) as a result of the nearly completed balance between
diffusion and migration transport of M within the shell layer. It
is then observed that the interphasial Donnan partitioning for
M is so strong that it leads to an increase of the local M
concentration inside the shell till Boltzmann equilibrium profile
is reached (curves h and i in Figure 2C). This latter increase in
local M concentration, purely electrostatic in nature, opposes
to the decrease of cM in the depletion regime (governed by
diffusion and migration transports), which precedes the setting
of local chemical equilibrium. Overall, the strong EDL potential
and field strength at the colloidal ligand interphase lead to an
efficient pumping of free metal ions into the shell. For decreasing
c∞, this results, at a given t, in larger local ML concentration
within the shell, as inferred from comparison of local ML
distribution profiles obtained at 0.1 mM (Figure 2D) and 100
mM (Figure 2B). Also, related to this, it is noteworthy that
depletion of M within the unit cell is accelerated by the presence
of the EDL field (insets of parts A and C of Figure 2) and that
the larger the electrolyte concentration, the faster chemical
equilibrium is established (see discrepancies between curves h
and i in parts B and D of Figure 2). In agreement with the strong
EDL potential (in absolute value) at c∞ ) 0.1 mM, the
magnitude of the electrostatic component of the ML stability
constant K* (eq 32) is large with K*/K ≈ 8 × 103, as we will
comment on more in details below.

For the sake of comparison, we report in Figure 3 the
(equilibrium) EDL potential distribution (Figure 3A), the
(equilibrium) EDL field distribution (Figure 3B), and the M
(Figure 3C) and ML (Figure 3D) concentration profiles at t )
93 ms for c∞ ) 0.1, 1, 10, and 100 mM. As commented later,
the time t ) 93 ms fits in the quasi-steady-state regime
(nonequilibrium chemical regime). Besides the elements already
discussed on the basis of Figure 2 (presence of maxima for the
M and ML concentration profiles inside the particle reactive
phase, M depletion feature, balance between M migration and

diffusion transports), parts A-D of Figure 3 make clear that
(i) the increase of cM and cML within the shell layer upon
decrease of c∞ is connected to the magnitude of the (Donnan)
potential and that (ii) the depletion of M outside the shell is
not only governed by diffusion process but also mediated for a
large part by the EDL field distribution at r > a + d. In more
detail, the position of the maxima in the M and ML concentra-
tion distributions is shifted deeper inside the shell when lowering
c∞. This shift is directly correlated to that of the position where
the EDL field starts to become significant within the shell layer
(r < a + d), recalling that deep inside the shell where the
potential is constant (y(x,1) ) yD) the electric field is zero. In
Figure 3A, the potential distributions based on the Debye-Hückel
approximation (eq 34) are reported together with the rigorous
numerical evaluations of the nonlinear Poisson-Boltzmann
equation. Unsurprisingly, the merging between the two is
excellent at large c∞, i.e., for low local potentials across the
interphase, and becomes very poor upon decrease of c∞ with a
large overestimation of the exact numerical results by the
analytical approach. For large c∞, the EDL potential profiles
and EDL field are antisymmetric and symmetric with respect
to the position (r ) a + d, y ) yD/2) and the plane r ) a + d,
respectively. This is in agreement with a previous analysis.54

Upon a decrease of c∞, these symmetry properties, though
conserved with the analytical eq 34, gradually disappear, in line
with the numerical study reported previously.52

In Figure 4, the time-evolution of the effective rate constant
of colloidal complex formation, ka

*(t) (eq 30), is reported for
various electrolyte concentrations c∞ under the conditions of
Figures 2 and 3. For a given c∞, the characteristic features of
the patterns ka

*(t)/ka are essentially those discussed by Duval et
al. in their analysis of metal speciation dynamics in soft colloidal
ligand suspensions with neglect of the interphasial EDL field.17

Briefly, one identifies three distinct regimes. The first regime
corresponds to the short time limit and reflects the dynamically
developing M diffusion layer around the particle: the transient
regime. The second regime follows the transitory establishment
of M diffusion profile and it is characterized by a quasi-constant
ka

*/ka: the quasi-steady-state regime. There, the diffusion flux at
the edge of the EDL where the potential is zero, maintains its
steady-state nature, that is

Jdiff(t))DM

∂cM(r,t)

∂r |a+Ro

≈ DM∆cM(t)/(a+ d) (39)

with ∆cM(t) ) cM(r)a+rc,t) - cM(r)a+Ro,t) and Ro is the radial
position that defines the boundary between the EDL region and
far-field domain (where y(r) ) 0).

For sufficiently long time t, the third and trivial regime (not
reported here), already invoked when discussing the M and ML
concentration profiles of Figures 2 and 3, is that where local M
and ML concentrations are those dictated by Boltzmann statistics
and eq 38 (local chemical equilibrium). On the basis of eqs 28,
30, 31, and 38 and Boltzmann statistics for M concentration
profile, we directly obtain for t f ∞

ka
*(tf∞)

ka
) K*

K
(40)

which for yD f 0 gives

ka
*(tf∞)f ka (41)

in agreement with ref 17. The limit provided by eq 41 means
that, in the absence of the M and ML concentration gradient at
the interphase core-shell/electrolyte (chemical equilibrium with

Figure 4. Time dependence of the ratio ka
*(t)/ka in the transient and

quasi-steady-state regimes under the conditions of Figure 2, at various
c∞ (indicated). Plain lines are only guides to the eye.
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yD f 0), the effective rate for ML formation in a solution of
homogeneously distributed low-molar mass ligands is identical
to that for ML formed with particle-confined ligands.

In line with the analysis in ref 17, the transient regime is
marked by an initial increase of ka

*(t)/ka with time followed by
a decrease for finally reaching quasi-steady-state value. The
resulting maximum for ka

*(t)/ka is related to the increase of FM
s (t)

when increasing t (starting from ka
*(tf0)/ka f 0 in agreement

with the boundaries in eqs 16-17) and the subsequent decrease
of FM

s (t) in relation with the gradual building up of the M
diffusion layer at both sides of the very interface between shell
layer and electrolyte solution (see parts A and C of Figure 2).
At fixed time, ka

*(t)/ka increases with decreasing c∞. In light of
the M and ML concentration profiles depicted in parts A and C
of Figure 2, this increase is intrinsically related to the significant
Donnan partitioning of M at the colloidal ligand interphase upon
decrease of c∞ (Figure 3A), which leads to larger FM

s (t). As
previously discussed, the time required for reaching local
chemical equilibrium (eq 38) increases with decreasing c∞.
Figure 4 illustrates that the time necessary for the establishment

of the nonequilibrium chemical regime (quasi-steady-state) is
also increasing when lowering c∞, in relation with the corre-
sponding increase of the magnitude of the maximum mentioned
above.

3.2. Impact of Colloidal Ligand Particle Dimensions on
the Ionic-Strength Dependence of K* and of ka

*/ka in the
Quasi-Steady-State Regime. The finite rates of association of
colloidal metal complexes are accessible, together with the
thermodynamic complex stability constant by, e.g., steady-state
deposition potential stripping chronopotentiometry (SSCP)
experiment.14 The dynamic parameter ka

* in the quasi-steady-
state regime is displayed in Figure 5A as a function of ionic
strength for a soft particle devoid of core (porous particle of
radius d ) 100 nm). To facilitate the understanding of the
interrelationships between EDL potential/field profiles, M/ML
concentration polarizations, and ka

*/ka, the simulations are
reported under the conditions that match those adopted in
Figures 2-4 (see captions for further details). Also, we show
the dependence of ka

*/ka on c∞ when Kos is evaluated according
to eq 11. In Figure 5B,C, the dynamic features of metal

Figure 5. Ratio ka
*/ka in the time range that corresponds to the quasi-steady-state regime as a function of c∞ for d ) 100 nm (A), d ) 30 nm (B),

and d ) 300 nm (C). The red open/plain symbols and the red dotted lines denote calculations performed with Kos ) 3.7 × 10-3 mol-1 m3 )
Kos(c∞)10 mM), and the blue open/plain symbols and blue dotted lines pertain to computations carried out by taking eqs 10 and 11 into account
(see motivations in the main text). In panels A, B, and C, plain symbols represent the rigorous evaluation of ka

*/ka (numerical analysis) and open
symbols are the approximate estimations of ka

*/ka by means of eq 36 with y(r)a+d) ≈ y(r)a) derived from solution of the rigorous nonlinear PB
equation; dotted lines are approximate estimations of ka

*/ka by means of eq 36 with y(r)a+d) ≈ y(r)a) derived from the solution of the linearized
PB equation (eq 34). Other model parameters are as in Figure 2. (D) Dependence of Kos on c∞ (eq 11) with zMzL ) -2 and acc ) ag ) 5 Å.
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speciation are further depicted as a function of c∞ for porous
particles of radius d ) 30 nm and d ) 300 nm, respectively. In
line with recommendations given in refs 14 and 17, the
comparison between the dynamic features of metal speciation
by colloidal ligands of different radii is rendered possible by
keeping the smeared-out ligand concentration FL

V (eq 29) constant
upon changing cp (or equivalently Vc) via imposing rc ) θ(a +
d) with θ a scalar adjusted to comply eq 29 with FL

V ) constant
(it is recalled that FL

V satisfies the equality FL
V/cL

* ) Vs/Vc
17).

Besides, θ systematically verifies the condition θ . 1, which
warrants fast achievement of the quasi steady state.9,14,17

From parts A-C of Figure 5, it is noted that at large c∞ and
for Kos ) constant ) 3.7 × 10-3 mol-1 m3 (red curves), ka

* (as
obtained from eq 30) tends to a constant value, which is
expected because y(r) f 0 for c∞ f ∞. More interestingly, at
large c∞, ka

* may significantly deviate from ka upon an increase
of the porous particle radius. As extensively discussed in ref
17, this discrepancy is due to the significant contribution of the
M diffusion transport within and outside the shell in determining
the overall colloidal complex formation rate constant. Under
conditions where ka

*/ka , 1 (panel C), metal speciation is
predominantly rate-limited by diffusive transport of M to/from
the shell that contains the binding sites L. For ka

*/ka ≈ 1 (panel
B), this is the kinetics of interconversion of M into ML (i.e.,
the constants ka,d) that governs the overall speciation process:
the nonequilibrium regime governed by chemical kinetics. For
intermediate values of ka

*/ka (panel A), the kinetic determinants
of eq 9 and the M diffusion transport concomitantly come into
play. Taking the behavior at c∞ f ∞ as a reference in the
following, ka

*/ka evaluated from the rigorous numerical analysis
of the governing M/ML transport equations (adopting Kos )
constant ) 3.7 × 10-3 mol-1 m3), gradually increases when
decreasing c∞. The smaller the size of the ligand particle the
larger is this increase with respect to ka

*/ka values evaluated at
c∞ f ∞. To understand this, it is recalled that upon a decrease
of c∞ the EDL field and potential distribution interfere to some
important extent with the M diffusion process in determining
the M/ML concentration polarizations across the interphase
core-shell/electrolyte. Conductive transport of M in the EDL
region and diffusion of M as a result of difference between M
electrochemical potentials in shell and bulk solution act indeed
in opposite directions: M migration in the EDL field region tends
to counterbalance via electrostatic partitioning the M concentra-
tion gradients built up by diffusion (see parts A and C of Figure
2). The balance between the interphasial M fluxes associated
with these two transport modes is exactly met at chemical
equilibrium (see Supporting Information). As a result, the larger
the contribution of diffusion transport in rate-limiting metal
speciation (i.e., the larger the ligand particle size), the smaller
the impact of the counteracting electrostatic EDL field in
determining the magnitude of ka

*/ka in the quasi-steady-state
regime. In line with this, for a given particle size, the increase
of ka

*/ka with decreasing c∞ is related to the enhancement of local
M concentration within the shell due to electrostatic partitioning
(see discussion of Figure 4). The latter diminishes the diffusion-
derived component of the overall complexation rate, thereby
rendering the process more kinetically limited (increase of ka

*)
than it is for c∞ f ∞.

In parts A-C of Figure 5, we report, for the sake of
comparison, the dependence of ka

*/ka with c∞ as obtained from
the approximate analytical expression given by eq 36 and for
Kos ) constant ) 3.7 × 10-3 mol-1 m3. For that purpose, the
required value for the potential y(r)a+d) in eq 36 is assimilated
to y(r)a) as obtained from the rigorous solution of the nonlinear

Poisson-Boltzmann (PB) equation (eqs 23-26) and from the
solution of the linearized PB equation (Debye-Hückel formula-
tion, eq 34). The assimilation y(r)a+d) ≈ y(r)a) constitutes
one of the approximations underlying the validity of eq 36 that
tacitly presumes that a constant surface or Donnan potential
(depending on κd value, see comment below eq 36) may be
attributed to the entire shell layer. In cases where y(r)a) is
evaluated from nonlinear and linearized PB equations, the ka

*/ka

vs c∞ plots exhibit very similar “sigmoid” patterns: starting from
c∞ f ∞ where ka

*/ka is constant (the colloidal charge is
completely screened), ka

*/ka sequentially increases upon decreas-
ing c∞ before reaching an asymptotic plateau to some lower
value of c∞. The gradual increase of ka

*/ka with decreasing c∞

corresponds to M electrostatic partitioning across the interphase,
as argued for the rigorous numerical results. The presence of
the plateau revealed by the analytical expression (36), is
explained by realizing that in the limit of very low c∞ (i.e., very
large y(r)a) in magnitude), eq 36 may be rewritten as

ka
*(c∞f0) ≈

4π(a+ d)DMcp

FL
V

(42)

which is independent of y(r)a) or, for that matter, c∞. Of course,
depending on the very value of ka, the critical concentration of
indifferent electrolyte in agreement with eq 42 will be different:
the lower ka, the lower is this critical concentration. Inspection
of parts A-C of Figure 5 indicates that eq 36 used in
conjunction with the nonlinear and linearized PB equations
provides, for a given particle size, identical predictions for ka

*/
ka at sufficiently low c∞, in agreement with eq 42, and at
sufficiently large c∞. In the limit of large c∞, the potential y(r)a)
is indeed so low that treatment of the nonlinear PB equation on
the basis of Debye-Hückel approximation is justified (see
Figure 3A). In the intermediate c∞ range just preceding that
where the aforementioned plateau is reached, the discrepancies
between ka

*/ka estimations based on eq 36 with the linearized
and rigorous solutions of the PB equation increase with
decreasing particle size. Indeed, for particles of radius that low
that kinetics predominantly governs the magnitude of ka

*, eq 36
approximates, in this c∞ range, to

ka
*/ka ≈ exp(-zM y(r)a+d)/z) (43)

Consequently, discrepancies between values of ka
*/ka evaluated

from nonlinear and linearized PB equations directly reflect the
overestimation of y(r)a) (assimilated to y(r)a+d)) from
Debye-Hückel treatment of electrostatics as compared to the
rigorous solution obtained from nonlinear PB equation (Figure
3A). In addition, the larger the particle size, the more the
quantity [ka exp(-zMy(r)a+d)/z)FL

V]/[4π(a + d)DMcp] in eq 36
exceeds 1 (we recall that FL

V/cp ) VscL
* ∼ d3 for a f 0), the

larger the concentration c∞ where the plateau is reached (eq 42),
and the smaller the dependence of ka

*/ka on c∞, in agreement
with results of parts A-C of Figure 5.

Qualitatively, the approximate eq 36 supports the numerically
evaluated ka

*/ka in the sense that it correctly underpins the extent
to which ka

*/ka depends on c∞: the larger the particle size, the
lesser pronounced is this dependence because the larger the rate
limitation of speciation by M diffusion to/from the shell.
Quantitatively, however, small and major differences are found
between analytically and numerically estimated ka

*/ka at suf-
ficiently large and low values of c∞, respectively. For large c∞,
the analytical eq 36 overestimates, within a few percent error,
the exact numerical results. This discrepancy was already largely
discussed in ref 17 and is assigned to the neglect in eq 36 of
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the M and ML concentration polarizations within the shell layer:
the larger the latter, the poorer the approximation of constant
M/ML concentration in the shell layer and the lesser accurate
eq 36 (parts A-C of Figure 5). More seriously, eq 36
significantly underestimates the exact ka

*/ka for sufficiently low
c∞: though eq 36 leads to a plateau in the ka

*/ka vs c∞ plot (eq
42), the numerically evaluated ratio ka

*/ka keeps on increasing
with decreasing c∞. This fundamental difference is due to the
neglect of the field distribution within and outside the shell in
deriving eq 36. At low c∞, the spatial regions where the EDL
field magnitude deviates from zero are more extended than at
larger c∞ (Figure 3B). Doing so, the coupling between M
electromigration in the interphasial field inside and outside the
particle, and M diffusion transport is entirely overlooked in eq
36. To put it in a nutshell, we state that eq 36 is acceptable as
long as the extension of the electric double layer inside and
outside the shell is small or moderate as compared to the
thickness of the shell layer, that is, for κmd . 1. When the latter
condition is not satisfied, accurate account of the EDL field
necessarily requires taking into account the nonlinear terms
reflecting the coupling between electrostatics and concentration
polarizations (inside and outside the shell) in the governing
transport equation for free metal M species (eqs 14 and 15).

Let us now comment on the effect of c∞ on ka
*/ka when the

impact of electrostatics on the local kinetic rate constant ka (eqs
10 and 11) compounds that previously discussed and associated
to the action of the only colloidal EDL field developing within
and outside the particle (blue curves, Figure 5). Starting from
c∞f ∞, numerically evaluated ka

*/ka then sequentially decrease
and, for lower c∞, increase upon further reduction of c∞. For
sufficiently large c∞ where the effect of the colloidal EDL on
ka

*/ka is marginal, the dependence of Kos on c∞ (eqs 10 and 11,
Figure 5D) leads to increasing ka upon a decrease of c∞. As a
result, the complexation process becomes increasingly diffusion
limited because the M-ML interconversion kinetics becomes
faster. This effectively leads to decreasing ka

*/ka. This decrease
is the most important for the system where diffusion predomi-
nantly limits the speciation process, i.e., for large particle size,
Figure 5C. On the contrary, it is reduced (Figure 5A) and even
absent (Figure 5B) for particles of smaller size where local ML
complex formation kinetics controls significantly and exclusively

the overall speciation rate. For sufficiently low electrolyte
concentrations, the impact of the colloidal EDL field on the
ratio ka

*/ka overrules that related to the dependence of Kos on c∞

previously discussed. In turn, ka
*/ka increases upon further

decrease of c∞ for the same reasons as those invoked for
explaining the action of the (only) EDL field at constant Kos.
For a given c∞ < 10 mM (c∞ > 10 mM, respectively), eq 30
(numerical computation) and the analytical eq 36 with taking
into account eq 11, lead to lower (larger, respectively) ka

*/ka

values as compared to those obtained with Kos ) 3.7 × 10-3

mol-1 m3 ) Kos(c∞)10 mM). This is easily explained by arguing
that the inequality Kos(c∞<10 mM) > Kos(c∞)10 mM) (Ko-

s(c∞>10 mM) < Kos(c∞)10 mM), respectively) (see Figure 5D)
basically means that the speciation process is more critically
diffusion limited (kinetically controlled, respectively) for c∞ <
10 mM (c∞ > 10 mM, respectively) than for c∞ ) 10 mM.
Finally, we mention that the respective positioning of the ka

*/ka

vs c∞ plots obtained from the analytical eq 36 (within linear
and nonlinear formulations of the PB equation) and from the
numerical analysis (eq 30), both used with ka computed on the
basis of eq 11, is essentially the same as that commented above
for analyzing situations where the c∞ dependence of Kos was
ignored. In addition, at sufficiently low c∞, one easily captures
the decrease of ka

*/ka with decreasing c∞, as predicted by
analytical eq 36 used in conjunction with eqs 10 and 11: for
such low c∞, ka

* is independent of the colloidal EDL field or
c∞(eq 42), whereas ka (or equivalently Kos) increases with
lowering ionic strength (Figure 5D).

In Figure 6, the dependence of the ML complex stability
constant K* (eq 32) on c∞ is displayed for porous ligand particles
of radius d ) 30, 100, and 300 nm. For the sake of comparison,
estimations based on Debye-Hückel treatment of the PB
equation (eq 34) are also reported. Upon a decrease of c∞, i.e.,
for increasing local EDL potentials |y(r)| (Figure 3A), K*
increases and deviates significantly from the intrinsic chemical
contribution K, as a result of the correction brought about by
interphasial M electrostatic partitioning. For a given particle
size and sufficiently large c∞ (i.e., sufficiently low |y(r)|),
merging is reached between predictions based on the rigorous
PB equation and the approximate Debye-Hückel PB formula-
tion, as expected. For homogeneous intraparticular ligand

Figure 6. Dependence of the ML stability constant K* on c∞ (A) and the dimensionless EDL potential distribution at 0.1 mM (B) for porous
particles of radii 30, 100, and 300 nm (indicated). Symbols in part A are predictions based on eq 32 and the nonlinear PB equation. Plain lines in
part A are predictions based on eq 32 and the linearized PB equation. Symbols in part B are predictions based on the nonlinear PB equation. Plain
lines in part B are predictions based on eq 34. Other model parameters are as in Figure 2.
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distribution, considering y(aerea+d) ≈ yD and y(rga+d) ≈
0, we show in the limit |yD| . 1 (reached for sufficiently low
c∞, see eq 37)

K * /K(c∞f0) ≈ Vc/Vs (44)

which is in line with the results of Figure 6. Upon a decrease
of the ionic strength, the limit given by eq 44 is reached for
lower c∞ within the framework of the nonlinear PB equation
than within Debye-Hückel approach for the electrostatics. This
is so because the latter overestimates the local EDL potentials,
as illustrated in Figure 6B. Finally, at a given c∞, subtle
differences are observed for K* as computed for porous ligand
particles of various radii. These differences are attributed to
variations in the spatial integrals of the corresponding potential
distributions (see eq 32) within and outside the shell, as pictured
in Figure 6B. In detail, the larger κd at given c∞ (the more
acceptable the relationships y(aerea+d) ≈ yD and y(rga+d)

≈ 0), the larger the spatial integral of the potential profile over
the shell layer and the larger K*.

3.3. Impact of the Core to Shell Ratio on the Ionic-
Strength Dependence of ka

*/ka and K*. In parts A and B of
Figure 7, we report the dependence of ka

*/ka and K* on c∞ for
particles of constant overall size a + d ) 100 nm but defined
by various core to shell ratios as expressed by d/(a + d) ) 0.2,
0.5, and 1. As in Figures 5 and 6, results are given for a constant
FL

V via adjustment of rc. For the sake of conciseness, the analysis
is carried out here by focusing solely on the impact of the
colloidal field/potential, i.e., for Kos ) 3.7 × 10-3 mol-1 m3 )
Kos(c∞)10 mM), thus ignoring the c∞ dependence of Kos given
by eq 11. Account of eq 11 leads to changes in the c∞

dependence of ka
*/ka along the lines extensively discussed in

Figure 5 (not shown).

For c∞f ∞, the charge carried by the colloidal ligand particle
is completely screened, the local potential and local field across

Figure 7. (A) Ratio ka
*/ka in the time range that corresponds to the quasi-steady-state regime as a function of c∞ for particle radius a + d ) 100

nm and various shell thickness (indicated). The results are reported for Kos ) 3.7 × 10-3 mol-1 m3 ) Kos(c∞)10 mM). Plain symbols are the
rigorous evaluation of ka

*/ka (numerical analysis), open symbols are approximate estimations of ka
*/ka by means of eq 36 with y(r)a+d) ≈ y(r)a)

derived from solution of the rigorous nonlinear PB equation, and dotted lines are the approximate estimations of ka
*/ka by means of eq 36 with

y(r)a+d) ≈ y(r)a) derived from the solution of the linearized PB equation (eq 34). Other model parameters are as in Figure 2 with adjusted rc

to comply with the condition FL
V ) 3.7 × 10-4 mol m-3. (B) Dependence of the ML stability constant K* (eq 32 used in conjunction with the

nonlinear PB equation) on c∞ for particle radius a + d ) 100 nm and various shell thickness (indicated). Dotted lines are only guides to the eye.
(C) and (D) Distribution of the dimensionless EDL potential and EDL field based on the nonlinear PB equation at 10 mM (plain lines) and 0.1 mM
(dotted lines) for particle radius a + d ) 100 nm and various shell thickness (indicated). The boundaries between shell layer and outer electrolyte
medium are indicated on the abscissa axis. Other model parameters are as in part A.

2288 J. Phys. Chem. A, Vol. 113, No. 11, 2009 Duval



the interphase both go to zero and the numerically evaluated
ratio ka

*/ka tends to a constant value, as expected. In agreement
with conclusion of the previous section, ka

*/ka increases upon a
decrease of c∞ as a result of the EDL field that counteracts the
interphasial M diffusion process. For a given indifferent
electrolyte concentration c∞, the lower the ratio d/(a + d), i.e.,
the smaller the shell layer thickness, the more kinetically
controlled the metal speciation or, stated differently, the larger
ka

*/ka. Also, the lower d/(a + d), the larger the increase of ka
*/ka

with respect to the value obtained at c∞ f ∞. These two last
features basically underline that modulation of the particle shell
thickness at constant overall size results in variations of the
dynamic parameter ka

*/ka as a function of c∞, which are
qualitatively in line with those discussed in Figure 5 where the
particle size is varied at constant core to shell ratio. In more
detail, the increase of ka

*/ka at a given c∞ for decreasing shell
layer thickness (or increasing core radius) originates from the
M/ML local interconversion kinetics that affect and possibly
fully control metal speciation in colloidal ligand suspensions.
Said differently, the diffusive flux around the particle no longer
rate limits the process upon diminishing the M/ML concentration
polarizations within the shell layer. This was already found17

in the limit of neglect of EDL electrostatics, i.e., at c∞ f ∞. In
addition, the increase of ka

*/ka with decreasing c∞ is most
significant for ligand particles where kinetics significantly or
predominantly rate-limits M speciation process, i.e., for particles
with thin soft surface layer thickness (small values of d/(a +
d)). Such particle geometries rapidly fall within the so-called
thin electric double layer limit (low κd values) upon a decrease
of c∞: the EDL potential and field profiles then exhibit the most
remarkable changes within the shell layer (parts C and D of
Figure 7), with the picture of Donnan partitioning (at the basis
of eq 36) that becomes necessarily incorrect for sufficiently low
κd. The comparison of the rigorous numerical results with those
estimated from the approximate eq 36 used in conjunction with
the analytical and numerical solutions of the PB equation is
entirely analogous to that extensively commented in Figure 5.
To conclude this section, Figure 7B illustrates that the stability
constant K* depends on the core to shell ratio because the latter
intrinsically governs the potential and field distributions across
the interphase (parts C and D of Figure 7). At fixed c∞, the
lower κd (i.e., the smaller the shell thickness), the lower the
local EDL potential and consequently the lower the electrostatic
correction to the intrinsic chemical component K.

3.4. Impact of Intraparticular Ligand Distribution on ka
*/

ka and K*. As a final step in our analysis of the impact of
electrostatics on metal speciation dynamics in suspension of soft
particles, we explicitly investigate the case where ligand
distribution within the shell is diffuse (R/d > 0), i.e., gradually
decreasing from bulk values in the heart of the shell component
of the particle to zero at the very interface formed with the outer
electrolytic medium (Figure 8A). Starting from the situation of
homogeneous soft interphase (R/d f 0), increasing R/d leads
to increasing and decreasing the local ligand concentration in
the vicinity of the particle core and in the outer shell layer,
respectively, in agreement with eqs 4 and 5. The condition of
constant total amount of ligand sites throughout the shell layer
(imposed by eq 5) leads, for sufficiently large values of R/d, to
a ligand distribution profile that becomes independent of the
interphasial diffuseness parameter R/d (Figure 8A). Note that
the area under the curves described by the function 4πr2cL(r)/
cL

* are identical and equal to VS. The effect of the position-
dependent ligand distribution on the EDL potential is displayed
in Figure 8B for selected values of R/d. In line with the ligand

profile previously commented, upon an increase of R/d, the local
EDL potential increases (in magnitude) in the spatial region
where one basically injects charges or ligand sites (close to the
particle core), and conversely, it decreases in the interfacial
region around the position r ) a + d where charges are depleted.
When R/d is increased, the nature of the ligand distribution
gradually renders inappropriate the approximation of Donnan
potential where the potential within the soft surface layer is
considered as constant. The effect of the interphasial ligand
profile details on the EDL field distribution is reported in Figure
8C. Namely, deviations from homogeneous repartition of ligands
within the shell layer result in decreasing maxima for the EDL
field as well as a shift of their location toward the heart of the
particle. As for the potentials, the EDL field locally increases
(decreases, respectively) in the regions where cL(r) is enhanced
(decreased, respectively) with increasing R/d.

On the basis of these modifications of the EDL potential and
field profiles as related to the diffuseness extent of the interphase,
we may now comment on the c∞ dependence of ka

*/ka (in the
quasi-steady-state regime) as a function of R/d (Figure 9A)
starting with Kos ) Kos(c∞)10 mM). In agreement with the
results of Figures 5-7, ka

*/ka increases with decreasing c∞ at
fixed R/d because M electromigration in the EDL region
effectively leads to metal speciation that is more kinetically
controlled. However, increasing R/d at fixed c∞ results in a
decrease of ka

*/ka before it levels off at large R/d. This leveling
off is easily explained by recalling that the concentration ligand
profile and therewith the EDL field and potential distributions
becomes independent of the interphasial diffuseness for suf-
ficiently large values of R/d. The decrease of ka

*/ka with
increasing R/d is the direct consequence of the associated EDL
field and potential variations in the zones where ligand
concentration is either enhanced or depleted (Figure 8C). These
variations result in M electrostatic partitioning that is greatly
hindered in the outer shell layer whereas the increase of local
potential in the vicinity of the core leads therein to a significant
increase of the free M concentration, as illustrated in Figure
9C where M concentration profiles are given for selected values
of R/d at 0.1 mM ionic strength. The overall picture is that the
decrease of the EDL field just outside the shell layer upon
increase of R/d favors the building of a concentration gradient
of free M species by diffusion from bulk solution toward the
particle. Therefore, EDL electrostatics counteracts to a lesser
extent the diffusion transport, which effectively leads to a
decrease of the overall speciation rate constant ka

* when
increasing R/d. This decrease of ka

* is the most significant at
low electrolyte concentrations, where the EDL field and potential
are large, and reduces in magnitude or even disappears at
sufficiently large c∞ (under the conditions of Figure 9, at c∞ ∼
10 mM). When the impact of R/d on ka

*/ka is analyzed at 0.1
and 1 mM by taking into account the c∞ dependence of ka as
expressed by eqs 10 and 11, the curves are basically shifted
downward in agreement with the results of Figure 5A obtained
for R/d f 0. Coming back to the concentration profiles of M
as depicted in Figure 9C and those of local ML complex
reported in Figure 9D, it is noteworthy that they are reminiscent
of that of the local ligand concentration within the shell layer
(Figure 8A) or, equivalently, of those for the EDL field and
potential profiles (parts B and C of Figure 8).

Finally, for the sake of completeness, Figure 9B shows that
the thermodynamic ML stability constant K* is also depending,
via the interphasial electrostatic potential distribution, on the
ligand concentration profile within the soft shell layer. More
explicitly, the increase of the local potential close to the core

Soft Colloidal Ligand Suspensions J. Phys. Chem. A, Vol. 113, No. 11, 2009 2289



surface as a result of increasing R/d, leads to increasing values
of K*. Doing so, increasing R/d at fixed c∞ or decreasing c∞ at
fixed R/d yields a significant electrostatic correction to be applied
to K as compared to the situations at R/d f 0 or c∞ f ∞,
respectively.

4. Conclusions: Consequences for the Dynamic
Evaluation of ML Colloidal Complex

To conclude our analysis, we briefly underpin some conse-
quences of the findings reported here on the dynamic evaluation
of ML colloidal complex systems. As extensively discussed
previously,14,17 the dynamic criterion for colloidal metal complex
resulting from the interaction between M and particle-confined
ligands should be evaluated by replacing the complex associa-
tion-dissociation rate constants ka,d, valid for homogeneous
ligand solution, by their colloidal equivalents ka,d

* . For dynamic
ML colloidal complex, the effective rates ka,d

* are fast on the
experimental time scale t, thus yielding

kd
*t, ka

*FL
Vt. 1 (45)

Provided eq 45 is satisfied, thermodynamic equilibrium
between M and ML is fully maintained in the bulk volume.

The other limit is given by kd
*t, ka

*FL
Vt , 1, which pertains to

static or inert ML complexes. In the situation of practical
interest where there is a consuming interface, e.g., an
electrode or a micro-organism acting as a sink for the free
metal species, the overall M flux from/toward the consuming
interface is governed by the interplay between diffusions of
M and (colloidal) ML and M-ML interconversion kinetics,
as subsumed in the rate constants ka,d

* . The lability criterion
is a measure of the contribution of the colloidal metal
complex to the overall metal flux from/toward the consuming
interface. It is defined by the ratio L* ) Jkin

* /Jdiff
* , where Jdiff

*

and Jkin
* are the purely ML diffusional flux and the flux

resulting from net dissociation of ML, respectively. We then
classically define the two limits for dynamic systems, those
controlled by diffusion (labile ML colloidal complexes, L*
. 1) and those rate-limited by kinetics (nonlabile ML
colloidal complexes, L* , 1).

On the basis of the results discussed in this study, we state
that the dynamic and (electrochemical) lability criteria (the
expressions of which are determined to some extent by the
thermodynamic complex stability constant K*, eq 326) for

Figure 8. (A) Distribution of ligand concentration within the shell layer for various R/d of the interphase core/shell/electrolyte (indicated). Distributions
of the electric double layer potential (panel B) and field (panel C) at 0.1 mM and various R/d (calculation based on the nonlinear PB equation).
Other model parameters are as in Figure 2.
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colloidal metal complex systems will be strongly depending not
only on the particle size, as extensively discussed earlier,6,14,17

but also on
(I) the background electrolyte concentration that leads to

changes in the interphasial EDL potential and field distribution;
(II) the solution pH or, more generally, the concentration

of charge determining ions, which affects the ligand (and charge)
concentration within the shell, thereby inducing modifications
of the electrostatic characteristics of the interphase core/shell/
electrolyte; and

(III) the very spatial distribution of ligands within the shell
layer, which in turn impacts the EDL composition.

More often than not, effects I-III on metal speciation
dynamics in soft colloidal ligand suspensions are intrinsically
coupled. The (titrable) charge carried by soft particles
depends on the local electrostatic potential within the shell
layer as concomitantly determined by the salt amount in the
medium and solution pH (see eq 8). Also, the structural
properties of microgel ligand particles19 or soft bioparticles
like bacteria23 are modulated upon variations of the inter-
phasial electrostatics via change in pH or c∞: these variations

are accompanied by swelling or shrinking of the particles,
thereby influencing their size, i.e., their overall volume charge
(ligand) density, and the inner charge (ligand) distribution
within the shell. The theory reported in this study provides
the basic elements for tackling such complex coupling
between particle geometry, interphasial diffuseness, EDL
electrostatics, and metal speciation dynamics in soft colloidal
ligand suspensions. Metal speciation dynamics in suspensions
of more involved biological systems such as bacteria or
reactive biofilms, require refined consideration of, e.g.,
interphasial M and/or ML internalization and/or excretion
mechanisms, the implementation of which along the lines
discussed here being possible. The analysis has also pointed
out that the course of bulk metal depletion (insets Figure 2)
is necessarily coupled to the physicochemical (in particular
electrostatic) determinants that govern the metal binding
within the shell. Doing so, we foresee that relationships may
be formulated between the dynamic speciation parameters
of interest (in particular ka

* and K*) and the rate of bulk metal
depletion, which is accessible by the experiment. This will
be the subject of a forthcoming analysis where the impact

Figure 9. (A) Ratio of ka
*/ka in the time range that corresponds to the quasi-steady-state regime as a function of R/d for 0.1, 1, and 10 mM

electrolyte concentration. Plain symbols refer to numerical computations with Kos ) 3.7 × 10-3 mol-1 m3 ) Kos(c∞)10 mM), and open symbols
pertain to those carried out by taking eq 11 into account. Other model parameters are as in Figure 2. (B) Dependence of the ML stability constant
K* (eq 32 used in conjunction with the nonlinear PB equation) on R/d for 0.1, 1, and 10 mM electrolyte concentration. Model parameters are as
in panel A. (C) and (D) Concentration profiles for M (panel C) and ML (panel D) at t ) 0.17 s (quasi-steady-state regime) and 0.1 mM electrolyte
concentration for various R/d (indicated). Other model parameters are as in panel A.
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of particle volume fraction on speciation dynamics will be
further analyzed in details.

List of Main Symbols and Abbreviations

a radius of the core of the soft colloidal ligand particle
(m)

ci)M,ML local concentration of species i ()M, ML) within a
unit cell (mol m-3)

cL
* bulk concentration of reactive sites within the soft

part (shell layer) of the colloidal ligand particle
(mol m-3)

cM
* initial bulk concentration of free metal species (mol

m-3) in the electrolytic solution
cp particle number concentration in the sample volume

(m-3)
c∞ bulk concentration of z:z background electrolyte
d thickness of the soft layer of the colloidal ligand

particle (m)
DM diffusion coefficient of free metal within/outside the

particle shell when its water content is sufficiently
high (m2 s-1)

Dparticle diffusion coefficient of the particle (m2 s-1)
f(r) radial function defined by eqs 4 and 5
K* stability constant for (ML) colloidal complex (mol-1

m3)
K chemical contribution to the stability constant for

(ML) colloidal complex (mol-1 m3)
ka association rate constant of the complex (ML) (mol-1

m3 s-1) (ka ) Koskw)
ka

* effective association rate constant of the colloidal
complex (ML)

kd dissociation rate constant of the complex (ML) (s-1)
kd

* effective dissociation rate constant of the colloidal
complex (ML)

kw rate constant for water substitution (s-1)
Kos stability constant of outer-sphere complex (mol-1 m3)
L ligand species
l typical separation distance between neighboring

reactive sites within the surface layer of the soft
colloidal ligand particle

M free metal species
ML complex species
r radial position (m)
rc characteristic dimension that enters the definition of

the radius of a unit cell (m)
t time (s)
Vc volume of a unit cell (m3)
Vs volume of the shell layer component of the colloidal

ligand particle (m3)
y(r) local dimensionless EDL electrostatic potential
zi)M,L valence of species i ) M, L

Greek Symbols

R decay length of the ligand distribution within the
shell layer

φ volume fraction of soft colloidal ligand particles in
the sample volume

ψ local electrostatic potential at the interface soft
particle/electrolyte solution

κ reciprocal screening Debye layer thickness in the
electrolytic medium

κm reciprocal screening Debye layer thickness within the
shell

µM electrochemical potential of free metal species M

Fi
V volume concentration of species i over the spatial

region of a unit cell (mol m-3)
Fi

S volume concentration of species i over the shell layer
of the colloidal ligand particle (mol m-3)

FL
el(r) local volume charge density within the surface layer

of the soft colloidal ligand particle
Fions

el (r) local volume charge density stemming from the
(mobile) ions present in the electrolytic medium

Supporting Information Available: Detailed steps for (i)
the derivation of the time dependence for the effective colloidal
complex association rate ka

*, (ii) the derivation of the colloidal
complex stability constant K*, and (iii) the numerical analysis
followed for evaluating the M and ML concentration profiles
(and thus ka

*) as a function of time. Also included is the
demonstration that Boltzmann statistics for M originates from
the exact balance between M diffusion and migration transport
across the interphase between particle and outer electrolytic
medium. This information is available free of charge via the
Internet at http://pubs.acs.org.
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